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1. INTRODUCTION

For an entire function/with maximum modulus

M(r) = M(r;f) = max If(z)j,
lzl~r

the exponential type T(f) is given by

T(f) = lim sup If(n)(O)jl/n = lim sup log M(r) .
n~~ r~~ r

The Whittaker constant W is defined to be the greatest positive number c with
the following property: If T(f) < c and each of/, !" 1",... has a zero in the
closed disc I z I ~ I, then / == O. The numerical value of W is known to lie
between .7259 and .7378 [6], [7]. The conjecture W = 21e has remained
unsettled since 1943 [2].

An exact determination of Wwas obtained by M. A. Evgrafov [3] in 1954.
The determination involves the Goncarov polynomials Gn(z; Zo ,... , Zn-l)
defined recursively by

Go(z) = 1,

Let
Hn = max I Gn(O; Zo ,... , zn-l)l,

where the maximum is taken over all sequences {Zk}~-l whose terms lie on
j z I = 1. Evgrafov proved that

W = {lim sup H~/n}-l.
n->oo
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In the present paper we improve Evgrafov's result and obtain a second
characterization of W. For n = 1,2,3,... and 0 ~ u < 00, let

<Xl

Tn(u) = max L Uk I Gk(O; zo ,..., Zn-l , 0, ... , 0)1,
k=n

where the maximum is taken over all sequences {Zk}~-1 whose terms lie on
I z I = 1. Let Un, Un > 0, be such that Tn(un) = 1, n = 1,2,3,.... We prove
the following:

and
W = lim Un = sup Un.

n-"OO t <.n <:: 00

These are consequences of the estimates

(.4)1 InH;;l/n < W ~ H;;lIn

and

(1.1)

(1.2)

(1.3)

(1.4)

n = 1,2,3,....

which hold for all positive integers n. On the basis of either (1.3) or (1.4), the
constant W can (in theory if not in practice) be calculated as accurately as
desired.

There are two matters related to the Whittaker constant that are of
considerably more importance than its numerical value. The first, which is
due to Evgrafov, is the existence of extremal functions.

THEOREM A (Evgrafov). There exists an entire function F of exponential
type W such that each ofF, F', r, ... has a zero in the disc [ z I ~ 1.

The second is a coefficient inequality which yields considerable information
about zeros of successive derivatives.

THEOREM B. Suppose n is a positive integer, and f is analytic in I z I ~ 1.
If each o/['I', ... ,j(n-l) has a zero in [ z I ~ 1, then

If(0) I :s::: g f Ifn+m)(o)! (1.5)
"" wn m=O (m + 1)!

Furthermore, there is an entirefunction f with the property that each off, I' ,f",...
has a zero in I z, ~ 1 and such that

1/(0)[ :f!- ~ I/(n+m)(o)!
> W.. m~o (m + 1)! '

Suppose that f is entire, T(f) < W, and each off, 1', /", ... has a zero in
I z I ~ 1. One can argue directly from Theorem B that f == O. The condition
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T(f) < Wassures that the right member of (1.5) approaches 0 as n -+ 00;
thereforej(O) = O. By applying Theorem B to each derivative offwe obtain
j(jl(O) = O,j = 1,2,3,... , so thatf== O. Taken together, Theorems A and B
give a fairly complete description of an interesting property ofentire functions
of exponential type.

A related and equally interesting problem concerns univalence of successive
derivatives of entire functions. R. P. Boas [1] proved that if f is a
transcendental entire function such that T(f) < log 2, then infinitely many
derivatives of f are univalent in I Z I :(; 1. Levinson [4] obtained a simpler
proof of Boas' result, but his method of proof affords no improvement on
the constant log 2. In view of Theorem A, the constant log 2 can not replaced
by a number greater than W. Using a univalent analogue of Theorem B, we
prove the following result.

THEOREM C. Let f be a transcendental entire function whose exponential
type is less than W. If D is a closed disc of radius 1, then infinitely many
derivatives offare univalent in D.

All the properties of Goncarov polynomials which we use are developed
in Section 2. This seemed desirable since Evgrafov's work [3] is available
only in Russian. The results contained in Lemmas 1 and 4, Theorems 1, 2,
and 3, and Corollary 1 are known and can be found in [3].

2. GONCAROV POLYNOMIALS

Suppose f is an entire function and {Zk}; a sequence of complex numbers.
If we write the defining relation for Goncarov polynomials in the form

we have

j(Z) = f pnl(O) z:
n=O n.

00

= L j(k)(Zk) Gk(z; Zo , ... , Zk-l)
k=O

(2.1)
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whenever the interchang~ in order of summation can be justified. In particular,
(2.1) holds iff is a polynomial.

LEMMA 1. The polynomials Gn have the following properties:

(n > 0);

(n > 0).

(2.2)

(2.3)

(2.4)

Proof Mathematical induction. In (2.4) the indicated differentiation is
with respect to z.

As an immediate consequence of (2.4), we have

o~ k ~ n,

and from (2.3),

k = 0, 1'00" (n - 1).

The last equation, together with G~n)(z; Zo '00" Zn-l) == 1, completely
determine the Goncarov polynomials, and allow one to express Gn (as
Goncarov did originally) as an iterated integral,

Algebraic properties of the Goncarov polynomials are, for the most part,
special cases of an algebraic identity which itself is a special case of (2.1).
In (2.1), replace {Zk}~ by a sequence {Wk}~ and replace f by the polynomial
Giz; Zo "00' Zn-l)' This yields

(fJ

Giz; Zo , ••• , Zn-l) = L G~k)(Wk ; Zo '00" Zn-l) Gk(z; Wo '00" Wk-l)
<:=0

n

= L Gn_k(Wk ; Zk '00" Zn-l) Gk(z; Wo ,'00' Wk- 1). (2.5)
<:=0

The numbers Wk in (2.5) are arbitrary; if we take them all to be 0, we obtain

(2.6)
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The other special case of (2.5) which we shall need is the following: let m
be an integer such that °< m < n and let

O~k<m

m ~ k < n.

Then

m-l
G71(z; Zo , ... , z71-l) = L G71-k(Zk ; Zk ,... , Z71_l) Giz; Zo , ... , Zk-l)

k=O

71

+ L G71_k(O; Zk ,... , Z71-l) Gk(z; Zo , ... , Zm_l , 0, ... , 0)
k=m

71

L G71_k(O; Zk ,... , Z71-l) Giz; Zo , ... , Zm_l ,0,... ,0).
k=m

Replacing k by n - k, we obtain

n-m

G71(z; Zo , ... , Z71-1) = L Gk(O; Z71-k ,... , Z71-1) G71_k(z; Zo , ... , Zm-1 ,0,... ,0).
k=O

(2.7)

With obvious notational conventions, (2.7) also holds for m = 0 and
m = n. The importance of (2.7) is that it is a separation of variables formula;
the first factors on the right involve only Zm ,... , Z71-1 , and the second factors
on the right involve only Zo , ... , Zm-l . This is crucial for the following lemma.

LEMMA 2. /f0 ~ m ~ n, then H71 ;;:, H71_mHm •

Proof The result is trivial if m = °or m = n. Suppose 0 < m < nand
choose the sequence {Zk};-1 with I Zk I = 1, 0 ~ k < n, so that
H", = I G",(O; Zo , ... , Z",-1) 1and H71- m = I G71_",(O; Zm , .•• , z71-1)1. Clearly,

From (2.7), with Z = 0, we have

71-m
= L Gk(O; Z71-k ,... , Z71-1) '\71-kG71_k(O; Zo , ... , Zm-1 , 0,... , 0)

k=O
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where Q(t\) is a polynomial in t\. Now

Hn ?> max I t\mQ(t\)I = max I Q(t\)I ?> I Q(O)I,
I~I=I I~I=I

and

I Q(O) I = I Gn_m(O; Zm ,... , Zn-l) Gm(O; Zo , ••• , zm-JI

which completes the proof.

LEMMA 3.

199

Proof Let j ?> I be fixed and write n = qj + d, 0:( d < j. From
Lemma 2 we have

Therefore

Since the last factor approaches I as n ---+ 00, we have

lim inf H~/n ?> HIli.
n-C)'X'

Therefore

which completes the proof.

LEMMA 4. For each non negative integer n,

Proof From the defining relation of the polynomials Gn one obtains

An easy induction argument establishes the desired result.
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H = lim H lin = sup H W
n-+ co n 1~j<:"oo J

00 Zk

A(z) = L Hk"
k=O k·

We note for future use that

1
1 = HI :::;; H :::;; log 2

and that A(z) is an entire function of exponential type IjH. The importance
of the function A(z) is that, apart from a constant factor, it majorizes a large
class of Goncarov polynomials. (A function f(z) = 'L.: anzn is said to be
majorized by g(z) = 'L.: bnzn if I an I :::;; bn , n = 0, 1,2,....)

LEMMA 5. If I Zk I :::;; 1,0 :::;; k < n, then Gn(z; Zo , .•• , Zn-l) is majorized by
HnA(z).

Proof We have from (2.6) that

n Zk
Gn(z; Zo , ... , Zn-l) = 'L. Gn-k(O; Zk ,... , Zn-l) kf .

k=O •

Since

the result follows. In particular, we note that

(2.8)

holds for all z.
The only other inequality for Goncarov polynomials which we shall need

is contained in the following lemma.

LEMMA 6. If 1 :::;; n :::;; m and {Zk};-l is a sequence of points in I Z I :::;; 1,
then

Hn{exp(ljH) - I}
I Gm(O; Zo , •.. , Zn-l ,0,... ,0)1 < (m _ n + I)!

Proof. Since

n-l m-k
Gm(O; Zo , ... , Zn-l , 0, ... , 0) = - L ( z~ k) , Gk(O; Zo , ••. , Zk-l)'

k=O m .
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its absolute value does not exceed

Replacing k by n - k in the last sum, we obtain

"Hn-k H" 00 (m - n + I)!L < L H-k 7-----'---77-:
k~l (m - n + k)! (m - n + I)! k~l (m - n + k)!

H" 00 H-k
~ ( + 1)' L -k

'
'm - n . k=l •

which completes the proof.

3. ENTIRE FUNCTIONS OF EXPONENTIAL TYPE

201

We are now in a position to establish the expansion (2.1) for a large class
of functions. Although the following theorem is relatively well-known, our
proof is new.

THEOREM 1. Iff is an entire function of exponential type less than l/H
and {Zk}~ is a sequence ofpoints in the disc I Z I ~ 1, then

00

fez) = L f(k)(zk) Gk(z; Zo , ••• , Zk-l)
k=O

for all z.

Proof We need only show that the interchange in order of summation
in (2.1) is justified in this case. This will be so provided that the series

is convergent. From (2.8) we have

I Gk(z; Zo "." Zk-l) I ~ HkA(I Z J)

~ ::":k A(I Z J)

(3.1)
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for n ): k. Therefore
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"I zn-Ie I .. 1L ( ::.- k)' Giz; Zo , ... , Zle-l) < H"A(I Z [) L ( _ k)' H
1e=0 n . 1e=O n . n-Ie

n 1
= HnA(j z I) L H k'

1e=0 Ie'

< H"A([ z [) A(l).

Therefore (3.1) converges provided that

'"L [P"J(O)! H"
,,=0

(3.2)

converges. To establish convergence of (3.2), we use the root test. Sincef is of
exponential type less than I/H, we have

lim sup{1 t It.I (0)I H"P/" = H lim sup IP"l(0)11/"
n-+oo '1-+00

<1.

Therefore (3.2) converges and the proof is complete.
As an immediate consequence of Theorem I we note that iff is of exponen­

tial type less than I/H and j(leJ(zle) = 0, k = 0, 1,2,... for a sequence of
points {Zle}~ in I z I < 1, thenf O. It follows from this that the Whittaker
constant is at least as great as 1/H. To complete the proof that W = 1/H we
follow the method of Evgrafov and construct an entire function ofexponential
type I/H such that it and each of its derivatives have a zero on the
circle [ z [ = 1.

THEOREM 2. There is an entire function F of exponential type I/H such
that each ofF, F', F", ... has a zero on the circle I z I = 1.

Proof For each positive integer n choose complex numbers Zk = zk(n),

o< k < n, on the unit circle such that

H" = I G,,(O; Zo ,... , z"_l)l.

Let

P,,(Z) = G,,(z; Zo , , Z,,_l) •
GnCO; Zo , , Z,,-l)

The polynomials P" satisfy P,,(O) = 1and are majorized by A. Therefore they
are uniformly bounded on bounded sets, and one can select a subsequence
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{Pn } that converges uniformly on bounded sets to an entire function F,
with F(O) = I, which is majorized by A. Therefore F is of exponential type
IjH or less.

Since F ¥= 0, it follows from Hurwitz' theorem that there is a point zo',
I zo' I = I, such that F(zo') = O. From the facts that F(O) = 1 and F(zo') = 0,
it follows that F' ¥= O. We can therefore apply Hurwitz' theorem to the
sequence {P~) and obtain a point zt' on I z I = 1 such that F'(Zl') = O. Since
F' ¥= 0 and F'(Zl') = 0, we conclude that F' is nonconstant, and therefore
that F" ¥= O. Applying the same argument, we obtain a point Z2' on I z I = I
such that F"(Z2') = O. Continuing in the same manner, for each positive
integer k we obtain a point Zk' on IZ I = I such that F(kl(Zk') = O.

All that remains to prove is that the exponential type of F is not less than
IjH. If it were, Theorem I would apply, and the expansion

00

F(z) - I F(k)(Zk') Gk(z; Zo', ... , Z~_l)
k=O

would yield F = 0, which is false.

COROLLARY 1. W = IjH.

Entire functionsjsuch that r(f) = Wand each of/, !"!",... has a zero in
I Z I ~ 1 will be called Whittaker junctions. The function F of Theorem 2
is a Whittaker function and the derivative of a Whittaker function is a
Whittaker function.

THEOREM 3. There exists a Whittaker junction 11"", with 11""(0) = 1, which
is majorized by eWZ •

Proof Let F denote the function of Theorem 2, let {tn}!" be an increasing
sequence of positive numbers with limit I, and set

Then F~k)(O) = tnkFlkl(O), and, since Fn is of type less than W, we have

Therefore, there is a positive integer m = m(n) such that



204

Let

BUCKHOLTZ

Then if;.(0) = 1 and

1
11/(;)(0)l = I F~m+;)(o) \ W-m

-
i Wi

n F~ml(O) W-m

so that if;. is majorized by eWz • Also, if;. and each of its derivatives have a
zero on the circle I Z I = 1jtn • Selecting a uniformly convergent subsequence
of {if;.}, we obtain a limit function 11/ with the desired properties.

THEOREM 4. Suppose n is a positive integer and u is a positive number. If
the entire function f is such that each of f, f' ,...,j<n-ll has a zero in I Z 1 :( 1
and such that

for all k ~ n,

then I f(O) 1 :( Tn(u). Furthermore, there exists such an f for which
I f(O) 1 = Tn(u).

Proof Let {Zk}O' be such that I Zk 1 :( 1 and f(kl(Zk) = 0, 0 :( k < n, and
Zk = 0, k ~ n. There is in this case no difficulty in justifying the expansion
(2.1), and we have

CD

fez) = L f(k)(Zk) Gk(z; Zo , ... , Zk_l)
k=O

CD

= L f(k)(O) Gk(z; Zo , ... , Zn-l , 0,... , 0).
k=n

Taking Z = 0, we have

I f(O) 1 = If Pkl(O) Gk(O, Zo , ... , Zn-l , 0, ... , 0) \
k=n

< max If f(k)(O) Gk(O; Wo ,... , Wk-l , 0,..., 0) I,
k=n

(3.3)

where the maximum is taken over all sequences {Wk}~-l whose terms lie in
I Z I < 1. By the maximum modulus theorem we can take, instead, the
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maximum over all sequences {Wk}~-l whose terms lie on I z I = 1. We then
apply the triangle inequality and obtain

a:J

1f(O) 1 <; max I 1flk)(O)1 [ Gk(O, Wo ,••• , W"-l , 0,... , 0)1
k=..

00

<; max I Uk I Gk(O; Wo ,••• , W.._ 1 ,0,...,0)1
k=..

In passing we note that, for °<;j < n, the function u-if(j) satisfies the
hypotheses of the theorem if n is replaced by n - j. We therefore have

j = 0, 1,..., (n - 1),

for functionsfwhich satisfy the hypotheses of Theorem 4.
It remains to show that the bound on f(O) is attained. For this purpose,

let {Zk}~-l be a sequence of points on I z I = 1 such that

""
T..(u) = I Uk I Gk(O; Zo , ••• , Z..-l , 0, ... , 0)1.

k=..

Let {A k }: be a complex sequence determined as follows. For k ~ n, let
1 Ak I = Uk and choose the argument of Ak so that

is real and nonnegative. Then

'"
T..(u) = I AkGiO; Zo , •.• , Z"-l , 0,... ,0).

k=n

Let

""
B(z) = B(z; n, u) = I AkGk(Z; Zo ,... , Z..-1 , 0,... , 0).

k=..

Then B(O) = T..(u), and

'"
B(j)(z) = I AkGk_;(Z; Zi , ••• , Z.._l ,0,... ,0),

k=..
o <;j < n,
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so thatB(j){zj) = 0,0 <j < n. For j ?: n one has

00

BW(z) = L AkGk_j(z; 0,..., 0),
k=J

so that 1BW(O)I = I A j I = uJ•

COROLLARY 2. Tn(W)?: 1, n = 1,2,3,....

Proof In Theorem 4, take u = Wand f = if/.

4. THE FUNCTIONS Tn

In the proof of Theorem 4 it was tacitly assumed that the series whose
maximum defines Tn(u) converges for all values of u, and, for fixed u,
converges uniformly in the variables Zo ,... , Zn-l when they are restricted to
I Z 1 = 1. This is an easy consequence of Lemma 6.

Restated in terms of W, Lemma 6 asserts that

eW - 1
I Gk(O; Zo ,... , Zn-l' 0, ... , 0)1 < wn(k _ n + I)! (4.1)

for k ?: n and IZj I < 1,0 <j < n. Therefore

00

L Uk I Gk(O; Zo , ••• , Zn-l , 0, ... , 0)1
k=n

( u)n Ie
U

- 1 I= unHn + W {eW - I} u - 1 .

Therefore

T..(u) < unHn + (~r {eW - I} Ie
u

;; 1 - 11

< (~r {eW - 1} Ie
u

;; 1 I, (4.2)
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since H" ~ W-". In the other direction we have

co

T,,(u) = max L Uk I GlO; Zo , ••• , Z,,-l , 0,..., 0)[
k=n

so that

207

unH" ~ Tn(u) < (u/w)n {eW - l}{e" - 1}/u. (4.3)

It is easily verified that T,,(u)/un is a nondecreasing function of u. If
0< u < v,

T,,(u) ~ (u/v)n Tiv). (4.4)

Therefore Tn(u) is strictly increasing; it follows that there is exactly one
positive number Un which satisfies T,.{un) = 1.

LEMMA 7. 1 ~ T,.{W) < 1.6.

Proof The first inequality is Corollary 2; for the second, we have from
(4.2) that

T,,(W) < wnHn + {eW - I} !e
w

; 1 - II
~ 1 +{eW -l}! e

w
; 1 -11.

Since W < .7378, we obtain Tn(W) < 1.6.

THEOREM 5. Un ~ W < u,,(l.6)ljn.

Proof Lemma 7 and (4.4) with u = Un and v = W.

Proof It follows from the proof of Lemma 7 that

1 ~ Tn(W) < W"Hn + 0.6.

Therefore 1 ;): wnHn > .4, and

Our bounds on T,.{W) together with the functions B,,(z) = B(z; n, W) of
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Theorem 4 yield a second method for obtaining a Whittaker function. For
these functions, we have the estimates

if 1 ~j < n, and I B~I(O)1 = Wi for j ~ n. It follows that the sequence
{B..}!" is uniformly bounded on bounded sets. Furthermore, every uniform
limit of a subsequence of {B..} is a Whittaker function.

5. THEOREM B AND RELATED RESULTS

If in Theorem 4 we drop the hypothesis I f(k)(O)1 ~ Uk for k ~ n, the same
argument yields the following result.

THEOREM 7. Suppose n is a positive integer and that f is analytic in I z I ~ 1.
If each ofJ, l',... ,1("-1) has a zero in I z I ~ 1, then

00

If(O) I ~ max L If(kl(O)11 Gk(O; Zo , ••• , Z.._l, 0'00" 0)1, (5.1)
k=..

where the maximum is taken over all sequences {Zk}~-l whose terms lie on
I z 1 = 1. Furthermore, there arefunctionsffor which equality holds in (5.1).

This bound on I f(O)I, while best possible, unfortunately is too complicated
to be of much use. To obtain something useful from (5.1), we use (4.1) to
estimate the second factors on the right. We then have

1.1 00 Ipn+ml(O) I
~ W" m~o (m + I)! '

which is the inequality of Theorem B. To complete the proof of Theorem B,
we take fto be the function "fI/' of Section 3. For this choice ofJ, one has

f(O) = I
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and

1 00 I pn+m)(o) 1 00 Wm

wn m~o (m + I)! ~ m~o (m + I)!

In this case the inequality

1/(0)1 s:~ ~ I/(n+m)(o)!
"" W n m£.;o (m + I)!

will be false if the constant C satisfies

C < W/(eW - 1),

eW - 1
W

209

and, in particular, if C = .67, which completes the proof of Theorem B.

THEOREM 8. The function iY of Theorem 3 satisfies

I iY(n)(o)! > (.4) wn, n = 1,2,3,....

Proof Applying Theorem B to iY, one obtains

1.1 00 I iY(n+m)(o)I
1 < wn ~o (m + I)!

= ~n! iY<n)(o)! + (1.1) Ie
W

- ~ - WI

< ~~ I iY<n)(o) 1 + .54,

from which the result follows.

6. UNIVALENT DERIVATIVES

For the proof of Theorem C we require the following result.

THEOREM 9. Suppose n is a positive integer andfis analytic in 1 z I < 1. If
none ofJ,j', ...,j(n-ll is univalent in 1 z I < 1, then
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Proof In (3.3), replacefby l' and let Z = O. This yields

n-l

1'(0) = L flk+ll(Zk) Gk(O; Zo ,..., Zk-l)
k~O

00

+ L flkH)(O) Gk(O; Zo ,..., Zn-l , 0, ... , 0), (6.1)
k-n

which holds for all sequences {Zk}~-l whose terms lie in IZ I ~ 1. The absolute
value of the second sum in (6.1) may be estimated by the method used in the
proof of Theorem 7; this absolute value does not exceed

1.1 00 Ipn+ml(O)I
M= wnm~l m! .

If each of the functions J, I', ... ,pn-l) fails to be univalent by having its
derivative take the value 0, we can choose the points {Zk}~-l so that the
first sum in (6.1) vanishes. In this case I1'(0)1 ~ M, and we are through.
Since this is, in general, not the case, we must eliminate the terms in the first
sum by a judicious choice of integrations. We consider two cases.

Case 1. There are points ex and fJ (#ex) in I Z 1 ~ 1 such that
!(n-ll(ex) = pn-1l(fJ). In this case, integrate both sides of (6.1) from ex to fJ
with respect to Zn-l and divide by fJ - ex. We then have

fJ ~ ex f:1'(0) dZn_ 1 = 1'(0),

n-2

= L !lkH)(Zk) Gk(O; Zo ,..., Zk-l),
k-O

and

The last inequality is obtained by performing the integration along the
straight segment from ex to fJ and noting that the· modulus of the integrand
does not exceed M.
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Case 2. There is a point 0: in I z I :::;:; 1 such thatfC"'l(o:) = O. In this case,
take Z"'-1 = 0: in (6.1). This yields

n-2
1'(0) = Lj(k+l'(Zk) Gk(O; Zo , ••• , Zk-l)

k=O

00

+ L fCk+U(O) Gk(O; Zo , ••. , Zn-2 , 0:, 0, ... , 0).
k=n

In either case, we can reduce (6.1) to

n-2
'(D) = L j(k+!I(Zk) Gk(O; Zo , ... , Zk-l) + K1(zo, ZI ,..., zn-2), (6.2)

k=O

where K1 is analytic in each variable and satisfies

max I K1(zo , ZI ,... , Zn-2) 1 :::;:; M,

the maximum being taken over all sequences {Zk}~-2 whose terms lie 10

I Z I :::;:; 1.
If we use the same process on (6.2), we obtain

n-3
1'(0) = L j<k+U(Zk) GiO; Zo , ••• , Zk_l) + K2(zo ,... , Zn-3)

k=O

with the same bound on the modulus of K2 • Continuing in the same fashion,
we obtain finally

1'(0) = Kn ,

where Kn is a constant which satisfies I Kn I :::;:; M. This completes the proof.

Proof of Theorem C. Without loss of generality we can take D to be the
disc I Z I :::;:; 1. Suppose that g is an entire function with r( g) < W, and that
N is a positive integer such that ifj ;;:, N then gUI is not univalent in I Z I :::;:; 1.
If we letf = gUI (for j ;;:, N) we have, from Theorem 9,

for all positive integers n.
Choose u so that r( g) = ref) < u < W. For all large n we have

m = 0, 1,2,....

Therefore

11'(0)1 < (l.l) (~r {eu
- I}



212 BUCKHOLTZ

for all n sufficiently large. Letting n - 00, we obtain 1'(0) = g(Hll(O) = O.
Since this is true for all j ~ N, it follows that g is a polynomial of degree at
most N, and the proof is complete.
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