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1. INTRODUCTION

For an entire function f with maximum modulus
M(r) = M(r;f) = max | @),

the exponential type +(f) is given by

1)) = linnl_)smup | fm )/ = lim sup log M(r) Jrll(r ) .

The Whittaker constant W is defined to be the greatest positive number ¢ with
the following property: If 7(f) < ¢ and each of f, f”, f”,... has a zero in the
closed disc | z | < 1, then f = 0. The numerical value of W is known to lie
between .7259 and .7378 [6], [7]. The conjecture W = 2/e has remained
unsettled since 1943 [2}.

An exact determination of W was obtained by M. A. Evgrafov [3] in 1954.
The determination involves the Gondarov polynomials G,(z; z, ,..., Z,_1)
defined recursively by

GO(Z) = 1:

n~1 n—k

zn Zy
Gn(Z; Zg 3eey Zn-—l) = ;lT - kz.z“o '(n_i—m Gk(z; Zg 3eers zk—l)'

Let
H, = max | Gn(O, 20 5eens Zn—l)'s

where the maximum is taken over all sequences {z;}5* whose terms lie on
| z | = 1. Evgrafov proved that

W = {lim sup HY™™

* Research supported in part by National Science Foundation Grant GP-8225.
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In the present paper we improve Evgrafov’s result and obtain a second
characterization of W. Forn = 1,2, 3,...and 0  u < oo, let

T, (u) = max Z u* | Gi(0; Zg 5erey Zny , 0,..., 0)],
where the maximum is taken over all sequences {z,};~* whose terms lie on
|z| = 1. Let u, , u, > 0, be such that 7T,,(x,) = 1, n = 1, 2, 3,... . We prove
the following:
— {li /my-1 __ 1/my~1
W = {lim H,"}™ = { sup H,"} (1.1)
and
W= limu, = (Sup Uy (1.2)

n->w

These are consequences of the estimates

(D H < W < H (1.3)
and
< W <16V u, (1.4)

which hold for all positive integers n. On the basis of either (1.3) or (1.4), the
constant W can (in theory if not in practice) be calculated as accurately as
desired.

There are two matters related to the Whittaker constant that are of
considerably more importance than its numerical value. The first, which is
due to Evgrafov, is the existence of extremal functions.

THEOREM A (Evgrafov). There exists an entire function F of exponential

type W such that each of F, F', F",... has a zero in the disc | z | < 1.

The second is a coefficient inequality which yields considerable information
about zeros of successive derivatives.

THEOREM B. Suppose n is a positive integer, and f is analytic in | z | < 1
Ifeach of £, f e, f™"V has a zero in | z| < 1, then

© (n+m)0
O < 55 3 Gt

Furthermore, there is an entire function f with the property that each of f, ', f"....

has a zero in | z | < 1 and such that

© (n+m)
O > 55 S EE . =25

Suppose that f'is entire, () < W, and each of £, f”, f”,... has a zero in
[ z| < 1. One can argue directly from Theorem B that /' = 0. The condition

(L.5)
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7(f) < W assures that the right member of (1.5) approaches 0 as n - oo;
therefore f(0) = 0. By applying Theorem B to each derivative of f we obtain
f90) =0, = 1,2, 3,..., so that f = 0. Taken together, Theorems A and B
give a fairly complete description of an interesting property of entire functions
of exponential type.

A related and equally interesting problem concerns univalence of successive
derivatives of entire functions. R. P. Boas [1] proved that if f is a
transcendental entire function such that 7(f) < log 2, then infinitely many
derivatives of f are univalent in | z | < 1. Levinson [4] obtained a simpler
proof of Boas’ result, but his method of proof affords no improvement on
the constant log 2. In view of Theorem A, the constant log 2 can not replaced
by a number greater than W. Using a univalent analogue of Theorem B, we
prove the following result.

THeEOREM C. Let f be a transcendental entire function whose exponential
type is less than W. If D is a closed disc of radius 1, then infinitely many
derivatives of f are univalent in D.

All the properties of Gonéarov polynomials which we use are developed
in Section 2. This seemed desirable since Evgrafov’s work [3] is available
only in Russian. The results contained in Lemmas 1 and 4, Theorems 1, 2,
and 3, and Corollary 1 are known and can be found in [3].

2. GONCAROV POLYNOMIALS

Suppose f'is an entire function and {z,}g a sequence of complex numbers.
If we write the defining relation for Gon¢arov polynomials in the form

n n n—=k

z 5
e Zb_“——‘(n 0! Gi(2;5 Zg seers Z-1)s

we have
1@ = 310 %

—k

Zf‘”’(O) z ) Gi(Z; Zp 5eees Zi1)

=0

w (n)O n—-k
=Y Guz; Zg 5ers Z1) Z f(n(_) ]Zc)l

k=0

= i FNzy) Gi(z; 24 5evvs Zr1) @.n
k=0
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whenever the interchange in order of summation can be justified. In particular,
(2.1) holds if fis a polynomial.

LEMMA 1.  The polynomials G, have the following properties:

Gu(Az; AZy ey AZyyy) == A"G (25 Zg 3eees Zniy); (2.2)
G205 295y Zna) = 0 (n > 0); (2.3)
Gn/(z; Zg 5eees Zn—l) = Gn—l(z; 2] 5eens Zn—l) (n > 0) (24)

Proof. Mathematical induction. In (2.4) the indicated differentiation is
with respect to z.
As an immediate consequence of (2.4), we have

G5 2o e Zug) = GpoiZ5 Zk youer Zna)s 0 <k <n,
and from (2.3),
G2y 3200 Za) = 0, k=0, L., (n — 1),
The last equation, together with G{)(z; zg ..., Z,_y) = 1, completely

determine the Gondéarov polynomials, and allow one to express G, (as
Gondarov did originally) as an iterated integral,

FIE: Y Tp_s
Gu(2; 20 505 Zn1) = f f f AXgy dXp_g - dXg .
2% % Zn—1

Algebraic properties of the Gondarov polynomials are, for the most part,
special cases of an algebraic identity which itself is a special case of (2.1).
In (2.1), replace {z;}5 by a sequence {w;}s and replace f by the polynomial
G.(z; 2y yeues Zn—y). This yields

=)
Go(z5 2g yeees Zuey) = z G:zk)(wk 3 20 seers Zn-1) G125 Wo 5eees Wip)
%=0

s

GoaiWie 5 Zi 5ees Zny) GilZ5 Wo 5o, Wig). (2.5)
k

i

0

The numbers w,, in (2.5) are arbitrary; if we take them all to be 0, we obtain

n k
G2 20 sevs Zat) = 3. G052 s Znt) 7 - (2.6)

k=0

640/3/2-6



198 BUCKHOLTZ

The other special case of (2.5) which we shall need is the following: let m
be an integer such that 0 << m << » and let

o 175 0<k<m
k70, m<k <n.
Then
m—1
Gu(2; 29 505 Zny) = Z G2 5 25 0o Zny) G2 Zg 5evns Ziemy)
k=0

+ Y, Guil0; zk s Zny) Gi(Z5 Zg sves Ziney 5 Osene, 0)
k=m

= Y Guil0; 2y e, Znyg) Gi(Z5 24 soes Zing 5 O, O).

k=m

Replacing £ by n — k, we obtain

G"(Z; 2 5eees Zn—l) = Z Gk(o; Zp—k 30ens Zn—l) G’n—k(z; Zp 5oy Zm—1 » 05"'9 0)'
k=0
2.7

With obvious notational conventions, (2.7) also holds for m = 0 and
m = n. The importance of (2.7) is that it is a separation of variables formula;
the first factors on the right involve only z,, ,..., z,_, , and the second factors
on the right involve only z, ,..., z,_; . This is crucial for the following lemma.

Lemma 2. IfO<<m < n,then H, > H,_,H, .

Proof. The result is trivial if m = 0 or m = n. Suppose 0 < m << n and
choose the sequence {z,}37' with |z,| =1, 0<k <n so that
H, = | Gm(07 20 5ee0s Zm—l)‘ and H, , = | Gn-—'m(O, Zm eens Zn-—l)[' Cleaﬂy,

H, > gllzgli VG0 AZg 5eees AZp_y 5 Zin 5eens Znop)l-
From (2.7), with z = 0, we have
Go(0; Azg ooy AZin_y s Zip 5eees Zpy)
= Zin G005 Zp_ sees Zney) A" *Gp_1(0; Zg seres Ziey 5 0,005 0)
=0

= A"Q(),
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where Q()) is a polynomial in A. Now
H, > max | A"QQ)| = max | Q)| = | 2(0),

and

[ Q(O)’ - l Gn—m(o; Zm guees zn-—l) Gm(O; Zg yeers Zm_]_)l
= H,_nH, ,

which completes the proof.

LEMMA 3.

lim H'" = sup HY.
n-ow 1<j<

Proof. Let j>=1 be fixed and write n = qj + d, 0 < d <j. From
Lemma 2 we have

H, > H,;Hy > HAH® = Hy.

Therefore
/ (n—a) /s j py—ali
Hi n > H,-n a)jin _ H}/JHj d/m.
Since the last factor approaches 1 as n — <o, we have

lim inf HY" > HY.

A

Therefore

lim inf H}™ > sup_ HY,

n->o 1<j<

which completes the proof.

LEMMA 4. For each non negative integer n,

H, < (1/log 2)~.
Proof. From the defining relation of the polynomials G, one obtains
n—1

Hn <Z(n——k)’ kZ

k=0

An easy induction argument establishes the desired result.

640/3/2-6*
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Let
H =lim H = sup HY’

n-w 1<{j<o

and

4@ =Y =

Z)y = .
Z H.k!

We note for future use that

1

B < <
L Hl\H\logZ

and that A(z) is an entire function of exponential type 1/H. The importance
of the function A4(z) is that, apart from a constant factor, it majorizes a large
class of Gonéarov polynomials. (A function f(z) = 3y anz" is said to be
majorized by g(z) = ¥ buz" if | a, | < b,,n=0,1,2,...)

LemMMma 5. If |z, | < 1,0 < k <n, then G,(2; 2¢ 5-.., Zn_1) IS majorized by
H,A(2).

Proof. We have from (2.6) that

n Zk
G2 20 5y Znog) = 2 Grid0; 24 5eevs Zpy) e

k=0
Since

\ Gn~k(0: Zlc seery Zn-—l)‘ g H —k < Hn/ch ’
the result follows. In particular, we note that

| G2 Zg 5oy Zna)| < HpA(| 2 [) (2.8)
holds for all z.
The only other inequality for Gon¢arov polynomials which we shall need
is contained in the following lemma.

LEMMA 6. If 1 < n <m and {z,}2" is a sequence of points in |z | <1,
then
H™exp(1/H) — 1}

| G0 Zp seves Znor » Opersy O)f <

(m—n-+ 1!
Proof. Since
n—1 Z;cn—k
Gm(os ZO ETENY) Zn—l ’ 09--'5 0) = - ]ZO m Gk(oa ZO 9eney zk-—l);
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its absolute value does not exceed

n-1 n-1
H, HE
< .
kgo(m — k) & (m — k)!

Replacing k by n — k in the last sum, we obtain

n Hr—* H» Z k(m —n -+ 1)'
k§1(m_n+k)‘ (m—n+1)‘ (m-—n—}—k)'

H"
\(m—n—i—l)'z kT

which completes the proof.

3. ENTIRE FUNCTIONS OF EXPONENTIAL TYPE

We are now in a position to establish the expansion (2.1) for a large class
of functions. Although the following theorem is relatively well-known, our
proof is new.

THEOREM 1. If f is an entire function of exponential type less than 1/H
and {z;}y is a sequence of points in the disc | z | < 1, then

) = z FO2) Gl Zo s Zut)

for all z.

Proof. We need only show that the interchange in order of summation
in (2.1) is justified in this case. This will be so provided that the series

ok

“—)— Gi(2; Zg enes Zpm1) 3.1

Z |

is convergent. From (2.8) we have

' Gk(z Zp 5eens Zk-l)l HkA(] z ])

H,
Hn—-k

< A z])
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for n > k. Therefore

n n—k
Z k)' Gk(z 2 5 ’Zk—l) HA(I z I) Z k)' H i
— HA(z)) ¥, -
= Hy Huk!
< H,A(| z |) A(1).
Therefore (3.1) converges provided that
Y 1) H, (3.2)

n=0

converges. To establish convergence of (3.2), we use the root test. Since fis of
exponential type less than 1/H, we have

lim sup{| 7 ()| Hp}*/" = H lim sup | f*™(Q)[/»
<1

Therefore (3.2) converges and the proof is complete.

As an immediate consequence of Theorem 1 we note that if f'is of exponen-
tial type less than 1/H and f*(z,) =0, k = 0, 1, 2,... for a sequence of
points {z,}5 in | z | << 1, then f= 0. It follows from this that the Whittaker
constant is at least as great as 1/H. To complete the proof that W = 1/H we
follow the method of Evgrafov and construct an entire function of exponential
type 1/H such that it and each of its derivatives have a zero on the
circle |z | = 1.

THEOREM 2. There is an entire function F of exponential type 1/H such
that each of F, F', F",... has a zero on the circle | z | = 1.

Proof. For each positive integer n choose complex numbers z; = z,(n),
0 < k << n, on the unit circle such that
H, =] Gx0; 2 ,..., Zp 1)l
Let

_ Gu(Z5 29 yeees Zny)
W) = G(0; Zg yorvr Zny)

The polynomials P, satisfy P,(0) = 1 and are majorized by 4. Therefore they
are uniformly bounded on bounded sets, and one can select a subsequence
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{P, } that converges uniformly on bounded sets to an entire function F,
with F(0) = 1, which is majorized by A. Therefore F is of exponential type
1/H or less.

Since F = 0, it follows from Hurwitz’ theorem that there is a point z,/,
| zy' | = 1, such that F(z,") = 0. From the facts that F(0) = 1 and F(z,") = 0,
it follows that F’ = 0. We can therefore apply Hurwitz’ theorem to the
sequence {P,, _}and obtain a point z," on | z | = 1 such that F'(z,") = 0. Since
F'= 0 and F "(z,") = 0, we conclude that F’ is nonconstant, and therefore
that F” == 0. Applying the same argument, we obtain a point z,’ on | z | = 1
such that F"(z,") = 0. Continuing in the same manner, for each positive
integer k we obtain a point z,” on | z | = 1 such that F*®(z,') = 0.

All that remains to prove is that the exponential type of F is not less than
1/H. If it were, Theorem 1 would apply, and the expansion

F@z) = Y. FP2) GUz; 2oy Zomn)

k=0

would yield F = 0, which is false.

CoroLLArRY 1. W = 1/H.

Entire functions f'such that 7( /) = W and each of £, f, f”,... has a zero in
| z| <1 will be called Whittaker functions. The function F of Theorem 2
is a Whittaker function and the derivative of a Whittaker function is a
Whittaker function.

THEOREM 3. There exists a Whittaker function #°, with % (0) = 1, which
is majorized by e">.

Proof. Let F denote the function of Theorem 2, let {¢,} be an increasing
sequence of positive numbers with limit 1, and set

F.(z) = F(t,2).
Then F¥(0) = £,*F*)(0), and, since F, is of type less than W, we have

tim P2 ©)]

im0 = 0.

Therefore, there is a positive integer m = m(n) such that

| F™0)) | Em(0)]
Wm > oglfa% o Wm+j ‘
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Let
¥,(2) = Fi@)Fm(0) .

Then #,(0) = 1 and

Fm0) | Wi
F(0) . w-m

< W,

7201 =|

so that ¥, is majorized by e">. Also, #,, and each of its derivatives have a
zero on the circle | z | = 1/¢, . Selecting a uniformly convergent subsequence
of {#.}, we obtain a limit function #~ with the desired properties.

THEOREM 4. Suppose n is a positive integer and u is a positive number. If
the entire function f is such that each of f, f',.... f® VYV hasa zeroin|z| <1
and such that

| f@0) <ut forall k>n

then | f(0)] < T.(w). Furthermore, there exists such an f for which
[ fO) = Tuw).
Proof. Let{z,}y besuch that |z, | < 1and f¥(z,) = 0,0 <k <n, and

z; = 0, k = n. There is in this case no difficulty in justifying the expansion
(2.1), and we have

-2}

f@) =Y f¥zy) Gz; Zg 5erv Ziom)

k=0

— 3 FO0) GilZ; 2 o Zact » Oy O). (3.3)

k=n

Taking z = 0, we have

FO) = | T F9(0) G0, 2 s 2t 0, 0 |
k=n
< max Z f(k)(()) Gk(O; Wo yeers Wi 09"'9 0) l’

k=n

where the maximum is taken over all sequences {w;}s~! whose terms lie in

[z] < 1. By the maximum modulus theorem we can take, instead, the
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maximum over all sequences {w,}o* whose terms liec on | z| = 1. We then

apply the triangle inequality and obtain

£ < max 3 | FBO)] | G0, Wo e Wa_g » Orey O)]

k=n

< max Y, u* | G0; wy ..y Wy , 0,00, 0)]

k=n

= T.(u).

In passing we note that, for 0 <{j < n, the function u~7f" satisfies the
hypotheses of the theorem if # is replaced by n — j. We therefore have

LfO0) S Wl ), j=0,1.,(n—1),

for functions f which satisfy the hypotheses of Theorem 4.
It remains to show that the bound on f(0) is attained. For this purpose,
let {z,}2™* be a sequence of points on | z | = 1 such that
T.) = Y, v*| G0; 24 ey Zyy , 0s..., 0)].

=1

Let {4,}% be a complex sequence determined as follows. For k > n, let
| 4; | = u* and choose the argument of 4, so that

ArGy(0; 2y 5.ey 2y, 0,..., 0)

is real and nonnegative. Then

T(uw) = ), AxG(0; 2 ..., Z4—y , 0,..., 0).

k=n

Let

B(z) = B(z; n,u) = Y, A;G(z; 2o 5o Zny » Os..., 0).

k=n

Then B(0) = T,(u), and

BNz) = Y AxGi 25 2; 3oy Zpy 5 Oyn, 0), 0 <j<n,

k=n
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so that BY)(z;) = 0, 0 <{j < n. For j > n one has

BUXz) = Y A;Gy_i(z;0,..., 0),

k=j
sothat | BY(0) = | 4;| = w'.
COROLLARY 2. T, (W)=1,n=1,23,...

Proof. In Theorem 4, take u = Wand f = #".

4, Tae Funcrions T,

In the proof of Theorem 4 it was tacitly assumed that the series whose
maximum defines 7,(u) converges for all values of u, and, for fixed u,
converges uniformly in the variables z, ,..., z,_, when they are restricted to

| z| = 1. This is-an easy consequence of Lemma 6.
Restated in terms of W, Lemma 6 asserts that

e — 1

I Gk(oa 20 seers Zn—1 s 0"": O)I < W"(k —n + 1)|

fork >nand |z | <1, 0 <j < n. Therefore

L

Y 4k | Gl0; Zg yoeer Zuey » Orerey O)]

k=n
T e — 1
< u* | G0; zg 5.e5 Zny)| + e T
0 1 kgﬂw k—n+1)
u\" b ulc—n
< yn W __ — S —
~ u Hn + (e 1) (W) k=;+1 (k —n + 1)!

— unH, + (%/)n{e"’— 1 ; e"u—l — 1}.

Therefore
Tuw) < wH, + (1) (¥ — 1) g _— L_ 13
(vt

@.1)

(4.2)
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since H, << W—". In the other direction we have
a

T (u) = max ), u*| Gi(0; zy,..., Zs—y , 0,..., 0)]

k=n
> max u" | Gn(os Zg 50005 zn—l)] =u"H,,

so that
wH, < T,(uw) < /W) {e¥ — 1}{e* — 1}/u. 4.3)

It is easily verified that T,(u)/u™ is a nondecreasing function of u. If
0<u<uv,

To(u) < (Ufv)" Ty(v). (4.4

Therefore T,(u) is strictly increasing; it follows that there is exactly one
positive number #, which satisfies 7,(x,) = 1.

LemMMa 7. 1 < T, (W) < 1.6.

Proof. The first inequality is Corollary 2; for the second, we have from
(4.2) that

TAW) < WoH, + {e¥ — 1} 31’”7‘;_1. - 1$

<1+{eW—1}§e—W:—l—_1g.

Since W < .7378, we obtain T,(W) < 1.6.
THEOREM 5. u, < W < u,(1.6)/",

Proof. Lemma 7 and (4.4) with ¥ = u, and v = W.

THEOREM 6. (AVW/"H '™ < W < HY,
Proof. It follows from the proof of Lemma 7 that
1 < T(W) < WrH, + 0.6.
Therefore 1 > W"H, > .4, and
(DYV"H" < W < H'™

Our bounds on T,(W) together with the functions B,(z) = B(z; n, W) of
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Theorem 4 yield a second method for obtaining a Whittaker function. For
these functions, we have the estimates

1 < T(W) = B,(0) < 1.6,
| BOO)| < WT,_(W) < (1.6) W,

if 1 <j<n, and | BY(0)) = W7 for j > n. It follows that the sequence
{B,}7 is uniformly bounded on bounded sets. Furthermore, every uniform
limit of a subsequence of {B,} is a Whittaker function.

5. THEOREM B AND RELATED RESULTS

If in Theorem 4 we drop the hypothesis | f*¥(0)| < u* for k > n, the same
argument yields the following result.

THEOREM 7. Suppose n is a positive integer and that fis analyticin| z | < 1.
Ifeach of f, f',..., f™ Y has a zero in | z | < 1, then

f©@) < max ¥ [FOO) | GuO; Zo s Zug » 0 Oy (5.1)

k=n

where the maximum is taken over all sequences {z,}3~' whose terms lie on

| z| = 1. Furthermore, there are functions f for which equality holds in (5.1).

This bound on | £(0)}, while best possible, unfortunately is too complicated
to be of much use. To obtain something useful from (5.1), we use (4.1) to
estimate the second factors on the right. We then have

© e — 1
FOI< T 1O =D

k=n

e —1 & |f(n+m)(0)|
wr = (m+ D!

L1 & [fitm(0)]
Swr e m+ 1D

which is the inequality of Theorem B. To complete the proof of Theorem B,
we take f to be the function #” of Section 3. For this choice of f, one has

f0) =1
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and

1 If(n+m)(0)| Z
WL mE D S (m+ D!

In this case the inequality

eV — 1

w

(n+m)(Q)
O < 55 3 L0

will be false if the constant C satisfies
C < Wie” — 1),
and, in particular, if C = .67, which completes the proof of Theorem B

THEOREM 8. The function #~ of Theorem 3 satisfies

| #(0) > (4) W, n=1,2,3
Proof. Applying Theorem B to ¥, one obtains

W (n+mi(()

= (m + !
1.1 & Wwrim
<m0+ Y

iy (m A 1)'
1.1 w__1—
= 7| PO+ (LD 35——W——W—

1
— (n)
< | WO + .54,

from which the result follows.

6. UNIVALENT DERIVATIVES

For the proof of Theorem C we require the following result

THEOREM 9. Suppose n is a positive integer and f is analyticin |z | < 1. If
none of f, f',..., ™~V is univalent in | z | < 1, then

o <5 3 RO

209
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Proof. 1In (3.3), replace f by f’ and let z = 0. This yields

n-1

f1©0) = ¥ f*(z) GO; Zg 5envy Zm1)

k=0

+ Y f%0) Gi0; 2g 50rey Zpy 5 0., 0), (6.1)

k=n

which holds for all sequences {z;}5~ whose terms lie in | z | <{ 1. The absolute
value of the second sum in (6.1) may be estimated by the method used in the
proof of Theorem 7; this absolute value does not exceed

M= |f(n+m)(0)[
Wn m=1 m: '

If each of the functions f, f',..., f"*~¥ fails to be univalent by having its
derivative take the value 0, we can choose the points {z,}¢~ so that the
first sum in (6.1) vanishes. In this case | f'(0)] << M, and we are through.
Since this is, in general, not the case, we must eliminate the terms in the first
sum by a judicious choice of integrations. We consider two cases.

Case 1. There are points o and B (%) in |z| <1 such that
fe (@) = f-(B). In this case, integrate both sides of (6.1) from « to B8
with respect to z,_, and divide by 8 — «. We then have

525 [ 1O e = 7O,

g n—1
ﬁ & k=0

n—2

= Z FED(z) Gi(0; 2 5eeny Zpy)s

k=0

s Zie1) AZpy

and

> Zn-1 > 9 i 0) dzﬂ—l = <M.

B O Jezam

The last inequality is obtained by performing the integration along the
straight segment from « to B and noting that the modulus of the integrand
does not exceed M.
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Case 2. Thereis a point ain | z| < 1 such that f™(a) = 0. In this case,
take z,_, = a in (6.1). This yields

n—2

f'0) = ¥ f¥N(z) Gu0; 2g 5.y Zim1)

k=0
+ Z f(k+1)(0) Gk(o; ZO PR Zn—2 s Oy 01'--y 0)'
k=n
In either case, we can reduce (6.1) to
n—2
0) = Y f**(ze) Gul0; 2o ..., Zxy) + K205 21 50ves Zng)s  (6.2)
k=0
where K is analytic in each variable and satisfies
max | Ky(2o , 2y o0y Znog)l < M,

the maximum being taken over all sequences {z,}5~2 whose terms lie in
lz] < 1.
If we use the same process on (6.2), we obtain

n—3
F©0) = ¥ f(z;) Gu(0; Zg 5..os Za1) + KoZg sevvs Zng)
k=0

with the same bound on the modulus of K, . Continuing in the same fashion,
we obtain finally

f0) =K,
where K, is a constant which satisfies | K, | < M. This completes the proof.

Proof of Theorem C. Without loss of generality we can take D to be the
disc | z| << 1. Suppose that g is an entire function with v( g) << W, and that
N is a positive integer such that if j > N then g’ is not univalent in | z | < 1.
If we let f = g'? (for j == N) we have, from Theorem 9,

o <5 3 0

for all positive integers n.
Choose u so that (g) = 7(f) < u < W. For all large n we have

| firtm(0)] << yrim, m=20,1,2,...
Therefore

O <) (5) ter — 1)
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for all » sufficiently large. Letting n» — oo, we obtain f'(0) = gt+1(0) = 0.

Since this is true for all j == N, it follows that g is a polynomial of degree at
most N, and the proof is complete.
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